Table 7. Anisotropic thermal vibration parameters
The B_{ij} are coefficients in the temperature factor expression:
$\exp\left[-(B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + B_{12}hk + B_{13}hl + B_{23}kl)\right]$
$U_{11} = B_{11}/2\pi^2 a^{*2}; U_{12} = B_{12}/4\pi^2 a^* b^*; etc.$

	U_{11}	U_{22}	U33	U_{12}	U_{13}	U ₂₃
Pd(1)	0.0399	0.0489	0.0496	0.000	-0.0015	-0.006
Pd(2)	0.0451	0.0486	0.0503	0.0000	-0.0047	0.0019
Pd(3)	0.0402	0.0489	0.0481	0.0003	-0.0026	-0.0009
S(1)	0.0494	0.0474	0.0520	0.0064	-0.0062	-0.0031
S(2)	0.0348	0.0516	0.0523	0.0005	0.0010	0.0001
S(3)	0.0457	0.0206	0.0563	0.0047	0.0109	0.0026
S(4)	0.0466	0.0551	0.0494	0.0029	-0.0078	-0.0035
S(5)	0.0444	0.0560	0.0473	-0.0020	-0.0003	0.0079
S(6)	0.0459	0.0599	0.0203	-0.0019	0.0000	0.0046
$\hat{C}(1)$	0.0502	0.0841	0.0785	0.0046	0.0174	0.0017
C(2)	0.0683	0.0857	0.0651	0.0120	0.0176	-0.0072
C(3)	0.1049	0.1377	0.1272	0.0057	0.0290	0.0041
C(4)	0.0467	0.0890	0.0536	0.0019	-0.0019	-0.0130
C(5)	0.0879	0.1300	0.0895	-0.0247	0.0091	-0.0163
C(6)	0.0638	0.1927	0.1152	0.0340	-0.0090	0.0099
C(7)	0.0776	0.0691	0.0627	-0.0059	0.0120	-0.0005
C(8)	0.2111	0.0819	0.1163	0.0313	-0.0545	-0.0428
C(9)	0.2451	0.1225	0.0999	0.0203	-0.0841	0.0454
C(10)	0.0747	0.0621	0.0629	-0.0063	-0.0234	0.0154
C(11)	0.0787	0.0839	0.0648	0.0032	-0.0334	-0.0021
C(12)	0.00469	0.1519	0.1819	0.0334	-0.0334	-0.0142
C(13)	0.0516	0.0604	0.0842	0.0172	0.0172	0.0082
C(14)	0.0388	0.0991	0.0570	-0.0072	-0.0012	0.0136
C(15)	0.0777	0.1553	0.1021	0.0184	-0.0138	0.0190
C(16)	0.0709	0.0874	0.0998	-0.0600	- 0.0099	0.0113
C(17)	0.0840	0.0939	0.2147	-0.0096	0.0059	0.0131
C(18)	0.1264	0.1119	0.2526	-0.0426	-0.0343	-0.0337

References

BRADLEY, D. C. & KUNCHUR, N. R. (1964). J. Chem. Phys. 40, 2258.

BRADLEY, D. C. & KUNCHUR, N. R. (1965). Can. J. Chem. 43, 2786.

HAYTER, R. G. & HUMIEC, F. S. (1964). J. Inorg. Nucl. Chem. 26.

International Tables for X-ray Crystallography (1962). Vol. III, p. 202 & 213. Birmingham: Kynoch Press. KUNCHUR, N. R. (1964). Nature, Lond. 204, 468.

MANN, F. G. & PURDIE, D. (1935). J. Chem. Soc. p. 1549.

Acta Cryst. (1968). B24, 1633 The Crystal and Molecular Structure of 4,4'-Diamino-3,3'-dichlorobiphenyl

By S.A. Chawdhury*, A. Hargreaves and S. Hasan Rizvi†

Physics Department, University of Manchester Institute of Science and Technology, Manchester 1, England

(Received 19 December 1967)

4,4'-Diamino-3,3'-dichlorobiphenyl, $C_{12}H_{10}N_2Cl_2$, crystallizes with cell dimensions a=12.5, b=3.85, c=23.7 Å, $\beta=108^{\circ}$, space group $P2_1/c$ and Z=4. The structure has been determined from threedimensional X-ray data and refined by the minimum residual method, with isotropic temperature factors for individual atoms, to give a final R index of 14%. The two phenyl rings are not coplanar, but are twisted around the linkage between them, C(1)-C(1'), so as to be mutually inclined at an angle of 21°; in addition, each phenyl ring is bent through a small angle (approximately 2.2° and 3.4° respectively) away from the line C(1)-C(1'). The length of the bond C(1)-C(1') is 1.515 ± 0.024 Å.

Introduction and experimental

A preliminary examination of one projection of the structure of 4,4'-diamino-3,3'-dichlorobiphenyl by

Toussaint (1948) gave an electron density map with spurious symmetry in addition to the true symmetry of the actual structure. The map suggested that the molecules are probably planar, or very nearly so, with chlorine atoms in the *trans* positions. We have now completed the analysis of the structure, using three-dimensional X-ray data kindly supplied by Dr Toussaint, and find that the phenyl rings are mutually inclined at an angle of 21° .

^{*} Present address: Physics Department, Rajshahi University, Rajshahi, East Pakistan.

[†] Present address: Physical Research Division, Central Laboratories, P.C.S.I.R., Karachi-32, Pakistan.

There is a misprint in Dr Toussaint's paper. With a unit cell a=12.5, b=3.85, c=23.7 Å and $\beta=108^{\circ}$, the space group is $P2_1/c$, not $P2_1/a$ as reported; the unit cell contains four molecules.

Dr Toussaint's three-dimensional X-ray data were obtained from Weissenberg photographs with intensities estimated visually. A small crystal was used to obtain 0kl, $1kl \dots 5kl$ reflexions and a larger one for h0l and h1l reflexions. No corrections were made for absorption. The dimensions of the smaller specimen are not recorded but the larger specimen had an irregular cross-section in which linear dimensions through the centre varied from 0.3 to 0.5 mm. With a linear absorption coefficient $\mu = 51$ cm⁻¹ differential absorption in the larger specimen would be substantial, and since data collected from this crystal were used to scale the intensities of the other reflexions it follows that absorption errors will have been introduced into all the data.

Determination and refinement of the structure

The heavy chlorine atoms enabled the structure to be determined in its a- and b-axial projections (Hasan, 1962). It is similar to that proposed by Toussaint (1948) but the two phenyl rings are not coplanar and the z coordinates differ from Toussaint's by one quarter of a lattice translation.

The structure was refined, using 851 independent *hkl* reflexions, by the minimum residual method of Bhuiya & Stanley (1963), with calculated structure factors based on the atomic scattering factors of Forsyth & Wells (1959) and isotropic temperature factors *B*. In five cycles the agreement index $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$ fell from 0.23 to 0.14. A final *R* value of 0.14 with isotropic temperature factors appears to be quite reasonable in view of the errors due to absorption in the experimental data and the omission of the contributions of the hydrogen atoms from the calculated structure factors.

The final positional and thermal parameters are given in Table 1. Standard deviations of the positional coordinates were estimated using the formula of Cruickshank (1960) and are as follows:

	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
Carbon	0·016 Å	0·019 Å	0∙013 Å
Nitrogen	0.013	0.015	0.011
Chlorine	0.004	0.006	0.003

The observed and calculated structure factors are given in Table 2.

Description of the structure

Fig.1 gives the dimensions of the molecule deduced from the atomic coordinates in Table 1. The estimated standard deviations in Fig. 1(b) and (c) were calculated using, respectively, the formulae of Ahmed & Cruickshank (1953) and of Darlow (1960). The dimensions

 Table 1. Final positional coordinates

 and isotropic temperature factors

	x/a	у/Ь	z/c	В
C (1)	0.2111	0.2806	0.4681	1·94 Å
C(2)	0.2517	0.3338	0.4203	2.34
C(3)	0.1780	0.4572	0.3680	2.39
C(4)	0.0686	0.5238	0.3595	2.36
C(5)	0.0256	0.4623	0.4073	2.86
C(6)	0.1015	0.3398	0.4616	2.31
N(1)	-0.0069	0.6479	0.3052	2.87
Cl(1)	0.2306	0.5245	0.3078	2.63
C (1')	0.2919	0.1684	0.5272	1.81
C(2')	0.2461	0.0142	0.5697	2.19
C(3')	0.3223	-0.0657	0.6250	2.23
C(4')	0.4351	-0.0271	0.6400	2.49
C(5')	0.4789	0.1232	0.5975	2.56
C(6')	0.4057	0.2197	0.5414	2.42
N(1′)	0.5105	-0.1033	0.6973	2.97
Cl(1')	0.2673	<i>-</i> −0·2404	0.6783	2·4 0

and estimated standard deviations must be viewed with caution because there are three possible sources of systematic errors for which no corrections have been made and for which no quantitative assessments are available. These arise from the absorption errors to which reference has already been made, from uncertainties in the precision of the unit-cell dimensions and from the errors caused by libration effects. It is considered, nevertheless, that these systematic errors are

Fig. 1. Dimensions of the molecule. (a) Numbering of the atoms (b) Bond lengths with standard deviations (Å) (c) Bond angles with standard deviations.

Table[§]2. Observed and calculated structure factors

hKl	10 Fo 10Fc	h K L 10	10 Fal 10 Fc	hĸĿi	oifoi lafe	h K L 1	15. 10Fe	h # 1 10 F.	1 10Fe	h K L	10 Fai 10 Fc	hKL	0 Fo 10 Fc
-12 0 4 -11 0 12 -10 0 8	457 -640 195 200 185 156	-12 0 6 -11 0 16 -10 0 10	137 204 138 56 280 322	-12 0 12 -11 0 18 -10 0 14	196 196 192 86 236 - 280	-12 0 16 -11 0 20 -10 0 20	253 283 161 -200 236 224	-12 0 18 186 -11 0 22 178 -10 0 22 133	5 151 184 1-126	-12 0 20 -10 0 4 -0 0 6	176 -131 398 411 123 -117	-12 0 22 -10 0 0	212 217 306 - 330
-0012 -8010	265 -287 261 373	90 14 80 12	137 115 602 665	-9016 -8014	136 -76 458 -487	-4018 -8016	134 -92 45 124	-80 4 125 -80 20 260	-241 -230	-806 -8024	611 647 172 -183	-808	368 - 372 114 115
-708 -602 -6016	148 -130 687 -687 257 -178	-7012 -604 -6020	306 303 191 174 367 402	-7014 -606 -6022	212 -210 395 -393 220 -191	-7010 -608 506	130 120 430 417 147 -147	-702020 -6010250 -508219	303 188	-7022 -6012 -5010	557 -560 126 -80		2012 134 2017 -254
-5014 -402	335 267 459 -460	-5016 -404	243 -20y 620 -671	5020 -406	307 287 603 653	-5022 -408	106 -144 019-1035	-5 0 24 193 -4 0 10 828	2 142	-5028	210 -200 828 771	-5030 -4014	141 146 578 -448
-4010 -3014 -3028	373 329 352 -317 134 124	-4020 -3016 -3030	145 -81 328 284 188 -207	-4024 -3018 -202	325 -321 130 -113 781-1135	-300 -3020 -204	147 147 325 -244 283 -357	-3 0 8 20 -3 0 22 26 -2 0 6 60	220 220 3 ~601	-3010 -3024 -208	164 -164 164 -75	-3 0 12 -3 0 26 -2 0 10	270, 227 87 00 420 -407
-2012 -108	310 -261 289 253 228 200	-2014 -1010	528 476 215 -190	-2016 -1014 -1028	483 -420 201 246 110 -103	-2018 -1016 002	136 123 408 -353 141 -140	-2020 70 -1018 18	5 760 5 155 0 -650	-104 -1020 006	u2 72 246 213 686 726	-106 -1022 008	151 -152 221 -180 922 -963
0 0 10	548 402 143 -02	0012	382 -340 83 68	0014	433 -407 70 69	0016	304 287 187 175	0018 67	6-617 8-332	0 0 20	102 -100 188 163	0 0 22 1 0 12 1 0 26	304 263 104 60
1028	67 72 208 145	200	579 532 634 -898 379 -342	202	775 1137 169 165	206	449 -423 67 -80	20 8 98	8 981 8 88	2 0 10 2 0 26	400 306	2 0 12 3 0 0	134 -67 46 -54
302 3016	126 94 250 -218 287 304	304 3018	75 -48 260 202 820 -802	306 3022 4010	120 -72 180 -152 606 651	308 3024 4012	255 255 205 180 173 -101	3 0 10 18 3 0 26 13 4 0 16 20	1 -167 9 -145 0 260	3 0 12 4 0 0 4 0 18	102 78 1280 1563 498 ~487	304 402 502	141 125 692 -735 87 -82
504	46 65 247 -297	508	321 -315 179 -192	5010 608	169 145 468 521	5016	240 251 63 92	5 0 18 23 6 0 12 13	6 -231	6 0 0 6 0 14	524 -509 139 109	602 6018 808	528 530 130 175 740 -842
8010 1202	365 379 166 -239	8012 1204	263 209	8 0 16 12 0 6	141 158 123 -157	10 0 2 12 0 8	272 284 139 -146	10 0 6 31 12 0 10 12	1 309 3 179	10 0 10 12 0 12	228 -280 87 -111	1200 -818	154 202 186 223
-819 -712 -7111	114 -126 102 -207 55 00	-8110 -713 -7112	200 -231 176 -38 180 143	-8 1 11 -7 1 7 -7 1 13	165 213 256 230 130 95	-8 1 13' -7 1 5 -7 1 14	184 -200 323 35 158 -120	-8 1 14 22 -7 1 8 20 -7 1 15 21	3 282 8 - 238 9 - 207	-8 1 15 -7 1 9 -7 1 17	120 -131 231 -244 201 190	-7 1 1 -7 1 10 -7 1 18	103 -34 132 -100 182 104
-7120	131 -38 102 97	-7122	130 85 153 -180	-7124	148 82 153 -150	-7125	184 -142	-61 1 26 -61 10 26	3 -256 8 274	-612	268 -323 208 -210	-613 -6112 -6122	287 304 151 -120 120 182
-6 1 23	182 17 393 - 386		154 -154 172 148	-512 -519	128 107 446 499	-513 -5110	516 -577 277 269	-5 1 4 47 -5 1 11 32	1 442 9 347	-5 1 5 -5 1 12	202 200 223 -223	-516 -5113	554 -724 347 -365
-5114 -5121 -412	441 465 100 80 202 302	-5 1 15 -5 1 22 -4 1 3	144 93 164 -150 305 -443	-5 1 16 -5 1 23 -4 1 4	66 -74 222 -219 95 -50	-5117 -5125 -415	200 -243 185 185 164 151	-5118 20 -5127 6 -416 6	0 -168	-5119 -5128 -418	74 70 190 -200 206 206	-5120 -411 -419	217 196 118 130 127 -95
-4 1 10 -4 1 18	300 -308 154 140	-4 1 11 -4 1 19	258 277 181 -179	-4 1 12 -4 1 21	132 87 200 207	-4 1 13 -4 1 22	280 -272 235 -255	-4114 18	1 200 2 87	-4116	200 -214 307 282	-4117	63 71 307 -356
-313 -3110 -3118	291 -297 186 -163 231 219	-314 -3111 -3119	40 -39 421 400 157 180	-313 -3113 -3121	2223 184 131 154	-3 1 14 -3 1 22	319 -283 242 225	-3 1 15 24 -3 1 23 11	5 -265 2 -107	-3 1 16	89 31 154 160	-3 1 17 -3 1 25	217 174 202 -205
-3127 -216 -2113	102 103 78 -9 320 320	-3128 -217 -3114	89 95 89 21 85 -85	-211 -218 -2115	134 -145 53 -73 168 -172	-212 -219 -2110	780 -087 74 24 233 245	-2 1 3 52 -2 1 10 34 -2 1 18 18	4 337 11 -183	-2 1 4 -2 1 10	145 123 234 -219 181 165	-2 1 5 -2 1 12 -2 1 21	441 -454 249 -220 213 -207
-2122	165 170 85 70	-2 1 23 -1 1 6	69 61 473 -441 201 250	-2124	130 -124 321 -275 461 -402	-111 -118 -1117	178 -190 425 409 550 -571	-11274 -11030 -11183	33 919 08 256 00 - 118	-113 -111 -112	890-1068 2223-223	-1 1 4 -1 1 12 -1 1 21	874 1078 293 -286 316 283
-1122 014	212 -236 305 -287	-1124	122 97 351 372	-1 1 25 0 1 6	115 90 102 59	-1120	104 103 127 -150	0111	57 119 52 180	012	441 475 40 -40	013	377 -427 292 -279
0118	245 232 48 53	0112	128 -123 40 -60	0120	100 ~93 36 31	0 1 21 1 1 0	250 247 111 -65	0 1 22 20	6 -203 6 1754	012	3 36 -34 780 -878	0124	115 112 238 -100
114 1111 1110	353 308 186 170 240 -215	115 1112 1120	153 -155 233 229 111 -109	11013	360 424 296 -267 95 88	117	308 300 67 8 63 74	1 1 15 1 1 1 15 1 1 1 25 1	47 -131	111	50 - 50 5 219 190 5 92 - 117	1 1 10	353 353 192 166 132 -138
211	184 140 7091 128 106	212 2110 2118	516 -518 315 318 182 -154	2132111	451 450 158 -157 166 172	214	276 200 192 -188 200 -100	2153 21132 2122	90 -409 35 227 78 83	21211	7 221 229 5 178 - 169 3 95 109	218 2116 2124	67 -78 100 129 130 -130
310 318	413 -444 231 213	311 319	274 -297 479 504	312 3110	201 313 254 -250	313 314	123 141 398 390	3151	97 -194 16 91	31	6 604 -647 6 230 -262 2 150 178	317	500 -539 349 -341 120 -171
3 1 19 4 1 4 4 1 13	256 -273 67 78	415	272 209 112 -120	4 1 6	208 205 128 143	41 7	181 -201 55 -69	4191	19 138 95 -116	411	0 238 -277 8 146 172	4 i i 4 i 20	160 176 85 -101
4121 518 5117	78 100 166 -180 110 112	4123 519 5119	79 -93 120 -129 208 -219	511 5110 5121	165 184 66 63	512 5111 5122	520 -517 194 193 73 92	5131	97 -107 94 -103 83 128	511	4 240 2/5 5 144 124 2 70 -07	5116	202 235 142 -143
614 6113	196 195 182 -191 300 -201	615 6113 716	241 -249	616 710 718	240, -235 227 -145 280 51	617 711 710	140 165 271 -218 336 312	618 7122 	83 82 64 339 43 -455	61 71 -52	9 218 - 239 3 124 298 3 73 61	6110 714	234 250 241 -137 388 411
-523	156 -150 165 -170	-5 2 6 -5 2 19	121 -80 68 68	-527	231 -141	-528	233 -231 146 -160	-5 2 10 3 -5 2 25	73 395 83 77 84 - 157	-521	2 259 -272 1 136 -135 0 123 120	-5 2 10	264 273 187 100 182 170
	170 -146 49 17	1 2 23	104 16 124 4	-4 2 14	230 -88 113 -128	-4 2 17	148 -31 284 106	-4 2 18 1 -4 2 26	04 -126 66 205	-421	271 146 7 66 -74	-422	50 280 67 -70
-322 -324 -325	307 447 165 -148 82 -37	-3 2 4 -3 2 16 -3 2 26	561 -741 266 -266 89 -70	-3 2 18 -3 2 18	230 250 250 250 250 250 250 250 250 250 25	-327 -3220 -222	174 123 151 -138 125 -94	-3122 -3122 -1132	72 200 75 57 45 231	-3 2 2 -2 2	3 70 -83 6 482 502	-3 2 2	150 151 220 -225
-128	154 188 378 -407 350 -304	-229	121 -62 194 -221 102 -38	-2 2 10 -2 2 20 -1 2 4	176 -191 154 -156 652 676	-2 2 11 -2 2 23 -1 2 5	90 -70 140 111 310 -107	-2 2 12 3 -2 2 25 -1 2 6 3	48 370 74 hz 27 -317	-221 -222 -12	4 70 -70 6 60 -204 7 70 70	-12	240 -230 127 106 170 -145
-120	142 87 160 -160	-1 2 10	150 285 218 215	-1 2 11	103 -64 70 -84	-1 2 12	334 - 369 66 - 42	-1 2 13 1 -1 2 23	08 -16 61 74 14 403	-121 -122	4 170 153 4 115 -123 4 468 -408	-1 2 10 -1 2 2 0 2	108 75 83 57 437 399
0 2 6	108 -165 154 176	0 2 14	160 -135 368 427	028	223 204 177 167	02 g 02 16	244 232 205 217	02101	35 157 20 - 202	021	1 80 -84 8 216 -224	021	180 -170
	92112 12886 104 77	0 2 22 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 -44 388 44 140 -267	0223	131 -07 131 -30 108 6	124	676 -779 437 443	1252	08 181 09 -123	12	6 102 234 4 100 -220	12	125 70 70 -12
1 2 16	134 -181	1 2 18	130 134 243 240 183 164	1 2 19 2 2 3 2 2 14	74 47 146 -115 230 -256	1220	175 -170 279 -270 70 111	12221	63 163 45 -125 70 -180	122 22 22 222	3 77 -152 6 165 -159 2 170 197	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	147 153 103 -05 200 -10 ⁸
3 8 1	198 -84 171 -331	3 # 3 3 # 4	184 -154	324 3215	560 660 86 4	326	106 - 307 81 - 111 20 80	327	79 87 00 121	322	8 80 qu 12 qq -102 7 136 -154	3210	144 16a 198 -212 58 35
4 2 4	58 66	4 2 10	235 A	4 2 11	190 -210 137 16	4 2 13 4 2 21	137 156	4 2 14 2 4 3 22	20 277 56 -83	421	5 150 150 3 56 -33	4 2 17	123 -102
584	901-530 386 416 73 130	5 2 5 3 3 4 3 2	45 -177 43 -169	520	123 -170 146 -184	527 -531 -434	148 - 148 267 260	-535 -4351	99 52 66 159	1,13	6 06 -40 7 145 131	-537	135 -151 378 -313
111	100 16 63 80 68 84	74312	172 157 58 80 68 6	-4311	172 174 130 -141 137 114	-4313 -4320 -134	070 -122 100 070 275 277	-43132 -43211	44 -218 33 103 16 -202	-431 -432 -33	4 132 -87 2 84 84 7 185 207	-4 3 15 -4 3 24 -3 3 10	ap -07 ap -85 202 107
193	318 -330	-3316	98 -91 265 -317	-3317	95 -21 349 -35	-3318	128 - 141	-3320 -2382	70 121 14 204 18 04	-332	2 133 -120 0 311 -311 0 113 102	-232 -2312 -2312	254 243 135 137 106 -112
-131	137 -101	-1313	76 41 311 800	-131 -131	210-220 u2 4	-1 3 2 -1 3 15	212 -162 181 181	-1 3 7 2 -1 3 17 1	36 155 68 -182	-13 -131	8 217 -207	-130	104 211 68 -81
-1321 038 038	00 -72 77 -53	031 039 0317	64 54 207 52 31 -28	032 0310 0318	133 -129 282 28 121 -110	033 0311 0319	2010 - 225 104 146 38 - 37	0342 03122 0320	12 -225 38 51	031 032	3 182 - 181 1 136 132	0314 0323	112 -41 31 -31
131	163 L07 98 -76	131	50 74 50 10	133	242 -230 180 -170 132 105	134	20/2 166 182 141 132 140	1353 13161 2332	30 -323 18 -116 13 211	13 131 23	0 103 -185 7 113 170 4 164 -200	134	-138 73 -17 332 -413
83 N 43 S	101-104	8 3 18 4 3 5	164 143 183 185	1 3 13 4 3 6	247 253	330	137 134 104 -130 151 -110	3332 43121 5311	21 273 57 -145 4 ⁸ 111	431	0 73 -103 3 122 -164 4 71 77	431 134 535	73 -42
53 534	6,-107 140 176	538 5316	134 135 103 -106	5310 5317	124 -131 103 127	53 IO 53 IA	124 -131 58 -62	51 1	64 -10	531	2 113 - 143	5 1 1	107 -124

probably small because of the excellent agreement between the molecular dimensions of 4,4'-diamino-3,3'dichlorobiphenyl and those of a very similar molecule, *viz.* 4,4'-diamino-3,3'-dimethylbiphenyl (Chawdhury, Hargreaves & Sullivan, 1968); comparative details of the molecular dimensions are given in Fig. 3, which is discussed later.

The least-squares best planes passing through the atoms in phenyl ring I [C(1), C(2), ... C(6)] and phenyl ring II [C(1'), C(2'), ... C(6')], respectively, are:

- I 0.2247x + 0.9420y + 0.2495z = 4.1359 Å
- II -0.0993x + 0.9119y + 0.3982z = 4.7712

The displacements of individual atoms from the two planes are shown in Fig.2 and Table 3.

 Table 3. Displacements from the best planes through the atoms in phenyl rings I and II respectively

	I	Ш				
	Displacement		Displacement			
C (1)	0∙010 Å	C(1')	0∙001 Å			
C(2)	-0.010	C(2')	-0.014			
C(3)	0.002	C(3')	0.020			
C(4)	0.006	C(4')	-0.010			
C(5)	-0.007	C(5')	-0.005			
C(6)	-0.001	C(6')	0.006			
N(1)	0.017	N(1')	0.028			
Cl(1)	-0.020	Cl(1')	0.029			
C(1')	0.090	C(1)	0.057			
C(4')	0.293	C(4)	0.274			
N(1')	0.484	N(1)	0.402			

Both phenyl rings are planar within the accuracy of the atomic parameters but the molecule as a whole is non-planar since the two rings are mutually inclined at an angle (φ) of 21°. The relative positions of the rings may be described by starting with a trans-planar configuration and then bringing the rings to their observed mutual positions by the following operations: (i) rotation of one ring with respect to the other about the axis C(1)–C(1') through an angle φ_1 , (ii) rotation of ring I through an angle φ_2 about an axis which is in the plane of ring I and passes through C(1) in a direction at right angles to the line C(1)-C(1'), (iii) rotation of ring II through an angle φ_3 about an axis which is in the plane of ring II and passes through C(1') in a direction at right angles to the line C(1)-C(1'). The angles φ_2 and φ_3 are small (approximately 3.4° and $2\cdot 2^{\circ}$ respectively) and as a result the angle between the rings, $\varphi = 21^{\circ}$, differs from φ_1 by only a few minutes. Fig. 2 shows that the angles φ_2 and φ_3 represent bends in the length of the molecule which are real and may not be attributed merely to uncertainties in the atomic parameters determined. The molecules of 4,4'-diamino-3,3'-dimethylbiphenyl show similar features in the solid state (Chawdhury, Hargreaves & Sullivan, 1968); corresponding values of φ_1 , φ_2 and φ_3 are 41°, 2.7° and $3 \cdot 3^{\circ}$ respectively. It is possible that steric hindrance, resonance energy and crystal forces all play a part in determining the values of φ_1 , φ_2 and φ_3 and it may well

be that in the latter molecule the larger methyl group is responsible for enhanced steric effects and an increase in the value of φ_1 . When crystal forces are absent (in the vapour phase) the angle φ_1 in the dichloro-molecule is reported to be $52 \pm 10^{\circ}$ (Bastiansen, 1949). Similar variations are observed in molecules of biphenyl with values $\varphi_1 = 0^{\circ}$ in the solid phase (Robertson, 1961*a*, *b*) and $\varphi_2 = 42^{\circ}$ in the vapour phase (Brock-

Fig. 2. (a) Displacements from the best plane through atoms in phenyl ring I. (b) Displacements from the best plane through atoms in phenyl ring II. In both (a) and (b) the best plane is viewed end-on and in a direction at right angles to the length of the molecule. The best planes are shown by horizontal lines and the displacements of individual atoms are measured by vertical displacements from this line; for clarity, vertical displacements are magnified by plotting them on a scale which is three times as large as the horizontal scale.

Fig. 3. Comparison of the molecular dimensions of (a) 4,4'diamino-3,3'-dichlorobiphenyl (b) 4,4'-diamino-3,3'-dimethylbiphenyl (c) biphenyl.

way & Karle, 1944; Bastiansen, 1949; Almenningen & Bastiansen, 1958).

There are no significant differences (Cruickshank, 1949) between the dimensions of equivalent bonds and angles in the two halves of the molecule. Assuming that the two aromatic rings have identical configurations, and taking mean values, we obtain the molecular dimensions shown in Fig. 3(a). For comparison the molecular dimensions of 4,4'-diamino-3,3'-dimethyl-

biphenyl and of biphenyl are shown in Figs. 3(b) and 3(c) respectively.

The similarity in the dimensions of the dichloroand dimethyl-molecules is somewhat surprising in view of the unexpectedly large variations in the C-C distances within the benzenoid rings; the greatest difference between equivalent bonds in the two molecules is only 0.025 Å, yet there are variations of 0.07 Å in the C-C distances within each benzenoid ring. It is

Fig. 4. (a) The structure viewed along [010], showing the shorter intermolecular distances. (b) The structure viewed along [100], showing the shorter intermolecular distances.

difficult to account for these observed variations in terms of systematic errors in the two structure determinations since the cell dimensions, space groups and crystal structures of the two materials are completely different.

There appear to be some similarities between corresponding bond angles in the two molecules but the agreement is much less obvious than the agreement between bond lengths.

The carbon atoms linking the two aromatic rings, C(1) and C(1'), are separated by a distance $(1.515 \pm 0.024 \text{ Å})$ in the dichloro-molecule which is not significantly different from that observed in the dimethyl molecule $(1.504 \pm 0.013 \text{ Å})$ and in biphenyl itself $(1.497 \pm 0.003 \text{ Å})$ and which probably represents a $C(sp^2)-C(sp^2)$ single bond.

The chlorine and nitrogen atoms are attached to the aromatic rings by bonds of normal lengths but all four atoms are displaced out of the planes of the rings and for ring II (Table 3) the displacements appear to be significant.

Fig. 4(*a*) and (*b*) show the structure viewed along the directions [010] and [100] respectively and indicate all distances of $4\cdot0$ Å or less between atoms in neighbouring molecules. The shortest distances are $3\cdot23$ and $3\cdot30$ Å between two pairs of nitrogen atoms, $3\cdot35$ and $3\cdot35$ Å between two pairs of chlorine atoms, and $3\cdot51$ Å between a pair of carbon atoms.

One of us (S.A.C.) wishes to express thanks to the University of Rajshahi for study leave and to the British Council for a scholarship and another (S.H.R.) wishes to thank the Governments of Pakistan and the United Kingdom for the award of a Colombo Plan Fellowship.

We also wish to express our gratitude to Dr J. Toussaint for supplying us with the three-dimensional X-ray data.

References

- AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.
- ALMENNINGEN, A. & BASTIANSEN, O. (1958). K. Norske Vidensk Selskabs Skrifter, No.4, 1.
- BASTIANSEN, O. (1949). Acta Chem. Scand. 3, 408.
- BHUIYA, A. K. & STANLEY, E. (1963). Acta Cryst. 16, 981.
- BROCKWAY, L. O. & KARLE, I. L. (1944). J. Amer. Chem. Soc. 66, 1974.
- CHAWDHURY, S. A., HARGREAVES, A. & SULLIVAN, R. A. L. (1968). Acta Cryst. B24, 1222.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. (1960). Acta Cryst. 13, 774.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- FORSYTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412.
- HASAN, S. S. (1962). Ph.D. Thesis, Univ. of Manchester.
- ROBERTSON, G. B. (1961a). Nature, Lond. 191, 593.
- ROBERTSON, G. B. (1961b). Nature, Lond. 192, 1026.
- TOUSSAINT, J. (1948). Acta Cryst. 1, 43.

Acta Cryst. (1968). B24, 1638

The Structure of cis-Cobalt Diazidobisethylenediamine Nitrate, Co(C₂N₂H₈)₂(N₃)₂NO₃

BY V. M. PADMANABHAN, R. BALASUBRAMANIAN AND K. V. MURALIDHARAN

Apsara Reactor, Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 74, India

(Received 24 November 1967)

The crystal structure of *cis*-cobalt diazidobisethylenediamine nitrate has been determined from twodimensional X-ray diffraction data. The cell has dimensions $a=12\cdot106$, $b=23\cdot620$, $c=8\cdot801$ Å, space group *Pnma* and Z=8. The cobalt ion has a distorted octahedral coordination with four N atoms of the ethylenediamine group and two N atoms of the azide group. The ethylenediamine molecule is in *gauche* configuration. The azido groups are linear with N–N distances $1\cdot11-1\cdot23$ Å. The valence angle Co–N–N is ~ 120°. The two nitrate ions are stacked one above the other to form a close packing with the complex ions.

Very few structures of compounds coordinating an azide group have been reported in the literature. The present note describes the structure of a cobalt compound coordinating ethylenediamine and azide groups.

Orthorhombic crystals of the cobalt complex were obtained from solution by the method described by Staples & Tobe (1960). Crystal data were determined from various rotation and Weissenberg films using Fe $K\alpha$ radiation, and were as follows:

 $a = 12 \cdot 106 \pm 0.010, b = 23 \cdot 620 \pm 0.010, c = 8 \cdot 801 \pm 0.01$ Å D_o (flotation method) = 1.60, Z = 8, $D_c = 1.58$ g.cm⁻³. The space group is Pnma or $Pna2_1$. Pnma was confirmed by the structure analysis.

The intensities of the hk0, 0kl and h0l reflexions were measured visually from Weissenberg films from crystals rotating about the three respective axes. The position of the cobalt atom was determined from Patterson projection maps, and from a series of four electrondensity projections the coordinates of all the other atoms were determined. The structure was refined by least squares on the CDC 3600 computer. The final R value for 293 reflexions was 0.10. The atomic co-